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Abstract. Moment matching theorems for Krylov subspace based model reduction of higher-
order linear dynamical systems are presented in the context of higher-order Krylov subspaces. We
introduce the definition of a nth-order Krylov subspace Kn

k ({Ai}n
i=1;u) based on a sequence of n

square matrices {Ai}n
i=1 and vector u. This subspace is a generalization of Krylov subspaces for

higher-order systems, incorporating the standard Krylov subspace Kk(A;u) and the second-order
Krylov subspace Gk(A,B;u) as special cases. Krylov subspace based structure preserving model
reduction onto this subspace eliminates the linearization step of rewriting the higher-order system in
an equivalent first-order form to prove moment-matching properties.
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1. Introduction. Linear dynamical systems of order two and higher appear
in the modeling of many physical settings such as electromagnetic, mechanical, and
thermal systems as well as systems coupling any number of these physical domains.
In many applications, these systems are excited by a single-input and a single-output.
The numerical discretization of such systems results in a continuous time-invariant
single-input single-output (SISO) model described by,

n∑
i=0

Di
di

dti
x(t) = bu(t) ,

y(t) = l∗x(t) ,

(1.1)

with initial conditions, di

dti x(0) = x(i)
0 , i = 0, . . . , n. Here t is the time variable, n is

the order of the differential equation, x(t) ∈ CN is a complex valued state vector, and
N is the state space dimension. u(t) is the scalar valued input function and y(t) is
the scalar valued output function. {Di ∈ CN×N}n

i=0 are the coefficient matrices and
b, l ∈ CN are the vectors which define the input and output distribution. This SISO
system is characterized by its transfer function,

H(s) = l∗
(

n∑
i=0

siDi

)−1

b . (1.2)

Treatment of the system (1.1) and its corresponding transfer function (1.2) can
be computationally challenging when the size of the state space N is on the order of
millions or larger. Spatial numerical discretization of time-dependent partial differen-
tial equations arising from continuum systems is an example of such a case. To reduce
the time and computational effort for evaluation of these systems, reduced-order mod-
eling techniques which can preserve the characteristics of the original system with a
substantially smaller size state space NR � N are desired.
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Krylov subspace based model reduction of linear dynamical systems has grown
in popularity due to its generality and computational efficiency in applications to
large-scale systems [1, 5]. This technique is generally categorized as a member of the
family of moment-matching methods [2]. The standard approach of Krylov subspace
based model reduction methods for a higher-order linear dynamical system (1.1,1.2)
is to perform a mathematically equivalent linearization to a first-order system by in-
troduction of auxiliary variables, followed by application of standard Krylov subspace
techniques for first-order systems. This approach has two disadvantages. The first is
the increase in the size of the system one must manipulate. In a nth-order system
with state space of size N , the equivalent first-order system involves a state space of
size nN , increasing the computational costs. The second is the lack of preservation of
the structure of the original system in the reduced-order model; neither the physical
character of the coefficient matrices of the original nth-order system nor its nth-order
structure is preserved.

To remedy these disadvantages in the case of second-order systems, techniques
treating the second-order system in its original form have been developed; see e.g.the
pioneering work by Su and Craig [12]. Bai and Su [3, 4] as well as Salimbahrami
and Lohmann [10] define a second-order Krylov subspace Gk(A,B;u) and prove that
model reduction using this subspace yields desired moment matching properties. Bai
and Su also observe that the standard Krylov subspace generated by a specific choice
of an equivalent first-order system contains “two copies” of the second-order Krylov
subspace. This correspondence between the original second-order system and the
equivalent first-order system is exploited in the proof of the moment matching theorem
presented for the equivalent first-order system. Further, these authors clearly identify
that the relevant subspace for structure preserving model reduction of the second-
order system is the second-order Krylov subspace. The second-order Krylov subspace
is also shown to outperform the standard Krylov subspace in terms of a projection
space for the quadratic eigenvalue problem arising from second-order systems [4]. The
work of Li and Bai [8] focuses on the concept of structure preserving model reduction,
presenting a more general moment-matching theorem for first-order systems invok-
ing projectors. The structure of the equivalent first-order system obtained from the
second-order system is exploited to prove the moment matching properties similar to
Bai and Su [3].

For the case of higher-order systems, a Krylov subspace based model reduction
method which directly treats the system in its original form are rare. To the best of
the authors knowledge, the work by Slone [11] presenting a method in the context
of asymptotic waveform evaluation (AWE) techniques, is the only one in existence.
In this method, a sequence of vectors which coincide with the sequence of vectors
spanning the right-like nth order Krylov subspace that we present is constructed and
used to construct the reduced-order model. Since the method is based strictly on
this single sequence as well as considering only projections with the same subspace
from the left and right, it lacks the flexibility of matching more moments by oblique
projections as well as incorporating a union of subspaces for moment-matching at
multiple expansion points.

As mentioned earlier, the standard technique is to rewrite the nth-order system as
an equivalent first-order system and employ standard Krylov subspace techniques for
model reduction of first-order systems. Freund [6] has proven that the standard Krylov
subspace generated from the equivalent first-order system of size nN for an nth-order
system contains “multiple copies” of the same subspace. We remark here that the case
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proven by Freund differs from the claim made by Li and Bai [3] for the second-order
system, such that the standard Krylov subspace generated by the equivalent first-order
system contains “two copies” of the second-order Krylov subspace. Freund has taken
the shift-“after”-linearization approach in the case of constructing approximations
near a point s0 6= 0. This approach generates a different standard Krylov subspace
from the shift-“before”-linearization approach taken by Li and Bai. The two cases
are identical in the case s0 = 0. Li and Bai make a remark in their paper that their
theorem is directly applicable to higher-order systems, but we find this to be not
necessarily true.

In this paper, higher-order systems are treated without a transformation to an
equivalent first-order system. The presented results extend the work of Li and Bai [8]
and Bai and Su [3]. The nth-order Krylov subspace, a generalization of Krylov sub-
spaces, is introduced. In the case of n = 1, however, it reduces to the standard Krylov
subspace, and in the case of n = 2, it reduces to the second-order Krylov subspace. A
moment matching theorem for higher-order systems is then presented, where the pro-
jection subspaces are enforced to contain nth-order Krylov subspaces. The projection
subspaces can contain nth-order Krylov subspaces at multiple expansion points for
multipoint moment-matching, a feature lacking in the method by Slone [11]. Com-
pared to the theorem presented by Li and Bai, our theorem requires no conversion to
an equivalent first-order system to prove the moment matching property of higher-
order systems, enabling ease in application and removal of auxiliary variables and
matrices. Connections are also made between the nth-order Krylov subspace and the
standard Krylov subspace generated from the equivalent first-order system under a
shift-“before”-linearization approach.

The remainder of the paper is organized as follows. In Section 2, the definition
of moments of the transfer function and its representation in terms of the coefficient
matrices of the transfer function is introduced. This representation motivates the
definition of the nth-order Krylov subspace introduced in Section 3. In Section 4,
the moment matching theorems utilizing projectors are presented along with several
lemmas required to prove the theorem. In Section 5, the connection between the nth-
order Krylov subspace and the standard Krylov subspace generated from the equiva-
lent first-order system under a shift-“before”-linearization approach is presented. This
correspondence shows the equivalence of the two subspaces.

Throughout this paper, C, CN , and CM×N are the sets of complex numbers,
column vectors of dimension N , and M × N complex matrices, respectively. Bold-
face letters are used to denote vectors (lower cases) and matrices (upper cases), and
I for the identity matrix. (·)∗ denotes the complex conjugate transpose, (·)T de-
notes the transpose, and (·)−∗ = (·∗)−1 denotes the complex conjugate transpose
inverse. span(X) denotes the space spanned by the columns of the matrix X, and
span{r0, r1, . . . , rk−1} denotes the space spanned by the vector sequence {ri}k−1

i=0 .

2. Moments of the transfer function. In this section, the definition of the
moments of a transfer function are reviewed and expressions for the moments are
presented.

The transfer function is obtained by taking the Laplace transform of system (1.1),
n∑

i=0

siDix̃(s) = bũ(s) ,

ỹ(s) = l∗x̃(s) ,

(2.1)
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where the tilde’s represent the Laplace transform of each variable. For simplicity we
have assumed zero initial conditions, di

dti x(0) = 0, i = 0, . . . , n. Eliminating x̃(s) in
(2.1) results in the equation ỹ(s) = H(s)ũ(s), where H(s) is the scalar valued SISO
system transfer function:

H(s) = l∗
(

n∑
i=0

siDi

)−1

b . (2.2)

The moments of a function are defined as the coefficients of the power series expansion
around a given point. The transfer function expanded at s = 0 is,

H(s) =
∞∑

i=0

Mis
i , (2.3)

where Mi are the moments. We present the following lemma to compute the moments
of the nth-order system.

Lemma 2.1. A function of the form,

f(s) = p∗
(

I−
n∑

i=1

siAi ,

)−1

q (2.4)

has the representation around s = 0,

f(s) =
∞∑

i=0

(
p∗Eiq

)
si , (2.5)

where Ai ∈ CN×N , 1 ≤ i ≤ n are given matrices, and p, q ∈ CN are given vectors.
The sequence of matrices Ek ∈ CN×N (0 ≤ k) are given by the recursion,

E0 = I ,

Ek =
min(k,n)∑

i=1

Ai Ek−i =
min(k,n)∑

i=1

Ek−i Ai (1 ≤ k) .
(2.6)

Proof. The proof of this Lemma follows as a consequence of Lemma A.1 in the
Appendix.

Using Lemma 2.1 and the assumption that D0 is invertible, (2.2) can be written
in the following two equivalent forms,

H(s) = l∗
(

I +
n∑

i=1

siD−1
0 Di

)−1

D−1
0 b

=
∞∑

i=0

[
l∗Ei

r

(
D−1

0 b
)]

si , (2.7)

where {Ei
r}∞i=0 is defined by the recursion in Lemma 2.1 with the substitution of Ai

r

for Ai, where

Ai
r = −D−1

0 Di, (1 ≤ i ≤ n) , (2.8)
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or equivalently,

H(s) = l∗D−1
0

(
I +

n∑
i=1

siDiD−1
0

)−1

b

=

b∗(I +
n∑

i=1

s∗iD−∗
0 D∗

i

)−1

D−∗
0 l

∗

=
∞∑

i=0

[
b∗Ei

l

(
D−∗

0 l
)]∗

si , (2.9)

where, {Ei
l}∞i=0 is defined by the recursion in Lemma 2.1 with the substitution of Ai

l

for Ai, where

Ai
l = −D−∗

0 D∗
i , (1 ≤ i ≤ n) . (2.10)

The two forms are presented here to motivate the construction of the projection
subspaces selected in Section 4 for model reduction. The subscripts for the sequences
of matrices {Ei

(·)}
∞
i=0 adhere to the convention, that r denotes the sequence generated

by the right-like nth-order Krylov subspace and l denotes that generated by the left-
like nth-order Krylov subspace in the sense that they are constructed using matrices
that are conjugate transposes of each other. The expressions for the moments in the
two cases are trivially identified as:

Mi = l∗Ei
rD

−1
0 b = l∗D−1

0 Ei
l

∗
b . (2.11)

The central goal of model reduction is to construct a model with less state space
degrees of freedom than the original system while retaining desired properties of the
original system, such as the structure of the coefficient matrices of the system {Di}n

i=0,
the order n of the system, and accuracy of the reduced order system transfer function
as measured normally by the degree of moment matching. Let us define the reduced-
order model system as:

n∑
i=0

DR,i
di

dti
z(t) = bRu(t) ,

yR(t) = l∗Rz(t) .

(2.12)

Here z(t) ∈ CNR is the complex valued state vector, and NR � N is the state space
dimension. {DR,i ∈ CNR×NR}n

i=0 are the coefficient matrices and bR, lR ∈ CNR are
the vectors which define the input and output distribution. yR(t) is the scalar-valued
output function of the reduced-order model. The corresponding transfer function
HR(s) of this system is:

HR(s) = l∗R

(
n∑

i=0

siDR,i

)−1

bR . (2.13)

By constructing a reduced-order model of the form (2.12), we can preserve the order
of the system. The power series expansion of the transfer function (2.13) at s = 0 is,

HR(s) =
∞∑

i=0

MR,is
i , (2.14)
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where MR,i are the moments. Following the same procedure for derivation of the
moments of the full system, the reduced-order system moments are obtained as,

MR,i = l∗REi
R,rD

−1
R,0bR = l∗RD−1

R,0E
i∗
R,lbR , (2.15)

where {Ei
R,r}∞i=0 is defined by the recursion in Lemma 2.1 with substitution of Ai

R,r

for Ai, where

Ai
R,r = −D−1

R,0DR,i, (1 ≤ i ≤ n) , (2.16)

and, {Ei
R,l}∞i=0 is defined by the recursion in Lemma 2.1 with substitution of Ai

R,l for
Ai, where

Ai
R,l = −D−∗

R,0D
∗
R,i, (1 ≤ i ≤ n) . (2.17)

For accuracy, we desire that the moments of the transfer function of the reduced
system, MR,i, match those of the original system, Mi, for the largest q possible,

Mi = MR,i for i = 0, . . . , q − 1 . (2.18)

This implies that HR(s) is a qth-order Padé approximant of H(s):

H(s) = HR(s) + O(sq) . (2.19)

The method we will employ to construct the reduced-order model (2.12) is based on
subspace projection methods which are introduced in Section 4. We will see that
these projections are intimately related to higher-order Krylov subspaces as will be
introduced in Section 3.

REMARK 2.1 Though our results are presented for SISO systems, they generalize to
multiple-input multiple-output (MIMO) systems. Consider the matrix-valued
transfer function of a MIMO system,

H(s) = L∗
(

n∑
i=0

siDi

)−1

B .

Here B,L ∈ CN×p for some p, are the matrices representing the input and output
distributions. The matrix-valued moments of this transfer function are defined
analogously as,

Mi = L∗Ei
rD

−1
0 B = L∗D−1

0 Ei
l

∗
B . (2.20)

3. Higher-order Krylov subspaces. In this section, the definition of an
nth-order Krylov subspace is introduced. This definition is a generalization of the
kth standard Krylov subspace defined as,

Kk (A;u) = span

u,Au, . . . ,AA · · ·A︸ ︷︷ ︸
k−1

u

 , (3.1)
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where A ∈ CN×N and u ∈ CN . A connection between the following sequence of
matrices {Ei}∞i=0 defined in Lemma 2.1 and the kth nth-order Krylov subspace can
be obtained by defining the following sequence and its span:

Definition 3.1. Let Ai ∈ CN×N , 1 ≤ i ≤ n be given matrices, and let u ∈ CN be a
nonzero vector. Let k also be given. Then the sequence

r0, r1, . . . , rk−1,

where

r0 = u ,

rl =
min(l,n)∑

i=1

Airl−i (1 ≤ l ≤ k − 1) ,
(3.2)

is called the kth nth-order Krylov sequence based on {Ai}n
i=1 and u. The space,

Kn
k

(
{Ai}n

i=1;u
)

= span {r0, r1, . . . , rk−1}

is called a kth nth-order Krylov subspace.

The connection with the standard Krylov subspace Kk(A;u) and second-order
Krylov subspace Gk(A,B;u) is clear from this definition,

Kk(A;u) = K1
k(A;u) for n = 1,

Gk(A,B;u) = K2
k(A,B;u) for n = 2.

Comparison between the definition of the nth-order Krylov subspace and the
recursive nature of the sequence of matrices {Ei}∞i=0 in Lemma 2.1 reveals the
following correspondence between this matrix sequence and sequence of vectors
spanning the subspace.

Lemma 3.2. The sequence of vectors {ri}k−1
i=0 spanning the kth nth-order Krylov

subspace Kn
k

(
{Ai}n

i=1;u
)

is defined by,

ri = Eiu , (3.3)

where {Ei}k−1
i=0 is the sequence of matrices defined in Lemma 2.1.

Proof. This is easily seen by comparing the expressions for Ei in Lemma 2.1 with
that obtained from inserting (3.3) into (3.2).

REMARK 3.1 One can easily construct a numerical algorithm to generate an
orthogonal basis spanning a nth-order Krylov subspace similar to the Second Order
Arnoldi (SOAR) method [4] for second-order systems. One algorithm by the name
of well-conditioned asymptotic waveform evaluation (WCAWE) [11] for constructing
a non-orthogonal subspace exists, though the constructed subspace is not identified
as a generalization of the standard Krylov subspace.

REMARK 3.2 The definition of the kth nth-order Krylov subspace also naturally
generalizes to block-Krylov subspaces of the form, Kn

k

(
{Ai}n

i=1;U
)
, where

U ∈ CN×p for some p.
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4. Moment matching theorems. In this section, a moment matching
theorem between the original transfer function (2.2) and the reduced-order transfer
function (2.13) is presented. Model reduction is conducted by projecting the original
system onto selected subspaces spanned by the columns of matrices X ∈ CN×NR

and Y ∈ CN×NR , where

lR = X∗l, bR = Y∗b, DR,i = Y∗DiX for i = 1, . . . , n . (4.1)

To show moment matching properties, one classically first converts to an equivalent
first order form [10, 3, 8]. Here we show such proofs are possible, even in the
nth-order case without resorting to this non-unique device. Our basic tool will be
projectors as utilized in Li and Bai [8]. To arrive at our main theorem, we will first
introduce 3 lemmas. The first introduces two projectors related to span(X) and
span(Y).

Lemma 4.1. A matrix P ∈ CN×N that satisfies P2 = P is defined as a projector
onto span(P). Given matrices X,Y ∈ CN×NR and D0 ∈ CN×N , we define the
projectors,

P = X (Y∗D0X)−1 Y∗D0 , (4.2)

Q = D0X (Y∗D0X)−1 Y∗ , (4.3)

where (Y∗D0X) ,D0 are assumed invertible. Then P, Q are projectors onto
span(X), span(Y):

Px = x for any x ∈ span(X),
y∗Q = y∗ for any y ∈ span(Y) .

(4.4)

Proof. This lemma is a well known fact and is stated without proof.

Our second lemma presents some useful relations between the projectors P and Q
and elements of the full and reduced-order models. In particular we identify how
certain elements of the ranges of X and Y are related to elements of the unreduced
model.
Lemma 4.2. Let matrices be defined as in (2.8, 2.10, 2.16, 2.17, 4.1, 4.2, 4.3).
Then for i = 1, . . . , n

XD−1
R,0bR = PD−1

0 b ,

XAi
R,r = PAi

rX ,

l∗RD−1
R,0Y

∗ = l∗D−1
0 Q ,

Ai∗
R,lY

∗ = Y∗Ai
l

∗
Q .

(4.5)

Proof. By (4.1, 4.2), we have

XD−1
R,0bR = X (Y∗D0X)−1 Y∗ (D0D−1

0

)
b = PD−1

0 b ,

XAi
R,r = −XD−1

R,0DR,i = −X (Y∗D0X)−1 Y∗ (D0D−1
0

)
DiX = −PD−1

0 DiX

= PAi
rX .
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Similarly, by (4.1, 4.3), we have

l∗RD−1
R,0Y

∗ = l∗
(
D−1

0 D0

)
X (Y∗D0X)−1 Y∗ = l∗D−1

0 Q ,

Ai∗
R,lY

∗ = −DR,iD−1
R,0Y

∗ = −Y∗Di

(
D−1

0 D0

)
X (Y∗D0X)−1 Y∗ = −Y∗DiD−1

0 Q

= Y∗Ai
l

∗
Q .

Our third lemma shows how elements of the moment expressions for the full system
are related to elements of the reduced system via the spans of X and Y.
Lemma 4.3. Let matrices be defined as in (2.8, 2.10, 2.16, 2.17, 4.1) with their
associated sequences from Lemma 2.1. Let integers k, r ≥ 0. If,

Kn
k

(
{Ai

r}n
i=1;D

−1
0 b

)
⊂ span (X) , (4.6)

Kn
r

(
{Ai

l}n
i=1;D

−∗
0 l
)
⊂ span (Y) , (4.7)

then

XEi
R,rD

−1
R,0bR = Ei

rD
−1
0 b (0 ≤ i ≤ k − 1) , (4.8)

l∗RD−1
R,0E

j∗
R,lY

∗ = l∗D−1
0 Ej

l

∗
(0 ≤ j ≤ r − 1) . (4.9)

These two relations imply,

l∗REi
R,rA

p
R,rE

j
R,rD

−1
R,0bR = l∗Ei

rA
p
rE

j
rD

−1
0 b , (4.10)

for all 0 ≤ i ≤ k − 1, 0 ≤ j ≤ r − 1, and 1 ≤ p ≤ n.

Proof. Let projectors P,Q be defined as in (4.2,4.3). We first prove (4.8) by
induction. For i = 0, by multiple application of Lemma 4.1, we have,

XE0
R,rD

−1
R,0bR = XI (Y∗D0X)−1 Y∗ (D0D−1

0

)
b = PD−1

0 b = D−1
0 b

= E0
rD

−1
0 b .

Assume the relation holds for all integers smaller than i. Then,

XEi
R,rD

−1
R,0bR = X

min(i,n)∑
j=1

Aj
R,rE

i−j
R,r

D−1
R,0bR

=
min(i,n)∑

j=1

[
XAj

R,r

]
Ei−j

R,rD
−1
R,0bR

=
min(i,n)∑

j=1

PAj
r

[
XEi−j

R,rD
−1
R,0bR

]

=
min(i,n)∑

j=1

PAj
rE

i−j
r D−1

0 b

= P

min(i,n)∑
j=1

Aj
rE

i−j
r

D−1
0 b

= PEi
rD

−1
0 b

= Ei
rD

−1
0 b .
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By taking the conjugate transpose of (4.9), one obtains

YEi
R,lD

−∗
R,0lR = Ei

lD
−∗
0 l . (4.11)

Relation (4.9) is proved by the same procedure as (4.8) under the substitutions:

X → Y P → Q∗

Ei
R,r → Ei

R,l Ei
r → Ei

l

DR,0 → D∗
R,0 D0 → D∗

0

bR → lR b → l .

Since the vectors b, l are arbitrary in the expressions for the moments in (2.11,2.15),
the equalities imply that

Ei
rD

−1
0 = D−1

0 Ei
l

∗
, (4.12)

Ei
R,rD

−1
R,0 = D−1

R,0E
i∗
R,l . (4.13)

Relation (4.10) is obtained from these relations with the help of (4.8,4.9) as

l∗REi
R,rA

p
R,rE

j
R,rD

−1
R,0bR = l∗REi

R,r

(
−D−1

R,0DR,p

)
Ej

R,rD
−1
R,0bR

= −l∗R
(
Ei

R,rD
−1
R,0

)
(Y∗DpX)Ej

R,rD
−1
R,0bR

= −
[
l∗R
(
D−1

R,0E
i∗
R,l

)
Y∗
]
Dp

(
XEj

R,rD
−1
R,0bR

)
= −

[
l∗D−1

0 Ei∗
l

]
Dp

(
Ej

rD
−1
0 b

)
= −l∗

(
D−1

0 Ei∗
l

)
Dp

(
Ej

rD
−1
0 b

)
= l∗Ei

r

(
−D−1

0 Dp

)
Ej

rD
−1
0 b

= l∗Ei
rA

p
rE

j
rD

−1
0 b .

We now come to our main result which proves to what extent one can match
moments in reduced-order models of the nth-order systems.

Theorem 4.4. Let matrices be defined as in (2.8, 2.10, 4.1). Let integers k, r ≥ 0.
If,

Kn
k

(
{Ai

r}n
i=1;D

−1
0 b

)
⊂ span (X) , (4.14)

Kn
r

(
{Ai

l}n
i=1;D

−∗
0 l
)
⊂ span (Y) , (4.15)

then

Mi = MR,i (0 ≤ i ≤ k + r − 1) . (4.16)

This implies,

H(s) = HR(s) + O
(
sk+r

)
. (4.17)
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Proof. For 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 1, using Lemma 4.3, Lemma 2.1,
Lemma A.2 in the Appendix we have,

MR,i+j+1 = l∗REi+j+1
R,r D−1

R,0bR

= l∗R

{
Ei+1

R,rE
j
R,r +

n−1∑
l=1

Ei+1−l
R,r Al+1Ej−l

R,r

}
D−1

R,0bR

= l∗R


min(i+1,n)∑

p=1

Ei+1−p
R,r Ap

R,r

Ej
R,r +

n−1∑
l=1

Ei+1−l
R,r Al+1Ej−l

R,r

D−1
R,0bR

=
min(i+1,n)∑

p=1

l∗REi+1−p
R,r Ap

R,rE
j
R,rD

−1
R,0bR +

n−1∑
l=1

l∗REi+1−l
R,r Al+1Ej−l

R,rD
−1
R,0bR

=
min(i+1,n)∑

p=1

l∗Ei+1−p
r Ap

rE
j
rD

−1
0 b +

n−1∑
l=1

l∗Ei+1−l
r Al+1Ej−l

r D−1
0 b

= l∗


min(i+1,n)∑

p=1

Ei+1−p
r Ap

r

Ej
r +

n−1∑
l=1

Ei+1−l
r Al+1Ej−l

r

D−1
0 b

= l∗
{

Ei+1
r Ej

r +
n−1∑
l=1

Ei+1−l
r Al+1Ej−l

r

}
D−1

0 b

= l∗Ei+j+1
r D−1

0 b = Mi+j+1 .

REMARK 4.1. Slone [11] in the WCAWE selects,

Kn
k

(
{Ai

r}n
i=1;D

−1
0 b

)
= span (X) ,

and X = Y leading to only k matched moments.

REMARK 4.2. It is often the case that one wishes to match moments not about the
origin but rather near s = s0 6= 0. In this case, the nth-order transfer function (2.2)
can be rewritten incorporating this shift as,

H(s) = l∗
(

n∑
i=0

siDi

)−1

b

= l∗
[

n∑
i=0

{s0 + (s− s0)}iDi

]−1

b

= l∗
[

n∑
i=0

i∑
p=0

(
i
p

)
si−p
0 (s− s0)pDi

]−1

b

= l∗

 n∑
p=0


n∑

i=p

(
i
p

)
si−p
0 Di

 (s− s0)p

−1

b

= l∗
[

n∑
p=0

D̂p(s− s0)p

]−1

b , (4.18)
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where we have defined,

D̂p :=
n∑

i=p

(
i
p

)
si−p
0 Di , for p = 1, . . . , n , (4.19)(

i
p

)
:=

i!
p!(i− p)!

. (4.20)

Application of Theorem 4.4 to the case incorporating a shift s0 results in the
following corollary.

Corollary 4.5. Let integers k, r ≥ 0. Let matrices be defined as in (4.1, 4.19).
Additionally define,

D̂R,i = Y∗D̂iX , (4.21)

If,

Kn
k

({
D̂−1

0 D̂i

}n

i=1
; D̂−1

0 b
)
⊂ span (X) (4.22)

Kn
r

({
D̂−∗

0 D̂∗
i

}n

i=1
; D̂−∗

0 l
)
⊂ span (Y) (4.23)

then

Mi(s0) = MR,i(s0) (0 ≤ i ≤ k + r − 1) , (4.24)

where,

Mi(s0) = l∗Êi
rD̂

−1
0 b = l∗D̂−1

0 Êi∗
l b (4.25)

MRi(s0) = l∗RÊi
R,rD̂

−1
R,0bR = l∗RD̂−1

R,0Ê
i∗
R,lbR . (4.26)

This implies,

H(s) = HR(s) + O
(
(s− s0)k+r

)
. (4.27)

REMARK 4.3. The theorem and corollary presented also apply to the case of a
MIMO system by replacing the input distribution vector b with an input
distribution matrix B ∈ CN×p, and by replacing the output distribution vector l
with an output distribution matrix L ∈ CN×p, for some p.

REMARK 4.4. Consider the transfer function of a SISO first-order system,

H(s) = l∗ (G + sC)−1 b ,

where l,b ∈ CN×N and G,C ∈ CN×N . One can identify,

D0 = G, A1
r = −G−1C, A1

l = −G−∗C∗.

The application of Theorem 4.4 with n = 1 yields the exact same results as Theorem
3.3 of [8] and other moment matching theorems presented for first-order
systems [13, 7, 10].
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5. Connections between Krylov subspaces. The standard method of
treating a higher-order systems is to transform it to an equivalent first-order system.
Here we elaborate on the connections between the nth-order Krylov subspace and
standard Krylov subspaces obtained from two types of equivalent first-order forms.
For comparison with general equivalent first-order forms, one must look at vector
spaces of linearizations and the standard Krylov subspaces they generate [9].

Lemma 5.1. Given the transfer function for an nth-order system,

H(s) = l∗
(

n∑
i=0

(s− s0)iD̂i

)−1

b ,

where D̂i is defined in (4.19), one can rewrite this as an equivalent first order
system,

H(s) = l∗f ((s− s0)C + G)−1 bf , (5.1)

where lf ,bf ∈ CNn and C,G ∈ CNn×Nn are defined as,

lf :=


l
0
...
0

 , bf :=


b
0
...
0

 , G :=


D̂0 0 · · · 0

0 W1
. . .

...
...

. . . . . . 0
0 · · · 0 Wn−1

 , (5.2)

C :=



D̂1 D̂2 D̂3 · · · D̂n

−W1 0 0
. . .

...

0 −W2 0
. . .

...
...

. . . . . . . . .
...

0 · · · 0 −Wn−1 0


. (5.3)

Here Wi ∈ CN×N , i = 1, , . . . , n− 1 are non-singular matrices. Denote the kth
standard Krylov subspaces defined by the equivalent first-order system as,

Kk(−G−1C;G−1bf ) = span(X) = span


 X1

...
Xn


 , (5.4)

Kk(−G−∗C∗;G−∗lf ) = span(Y) = span


 Y1

...
Yn


 , (5.5)

where X,Y ∈ CNn×k and Xi,Yi ∈ CN×k, (i = 1, . . . , n). The columns of the
matrices X and Y correspond to the Krylov vectors. When Wi = D̂0,
(i = 1, . . . , n− 1),

span(X1) = Kn
k

(
{−D̂−1

0 D̂i}n
i=1; D̂

−1
0 b

)
, (5.6)

span(Y1) = Kn
k

(
{−D̂−∗

0 D̂∗
i }n

i=1; D̂
−∗
0 l
)

, (5.7)
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and,

span (Xi) ⊂ span (X1) for i = 2, . . . , n . (5.8)

The columns of the matrices X1 and Y1 correspond to the sequence of vectors
generated by the kth nth-order Krylov subspace.
Proof. We have,

−G−1C =


−D̂−1

0 D̂1 −D̂−1
0 D̂2 −D̂−1

0 D̂3 · · · −D̂−1
0 D̂n

I 0 0 · · · 0

0 I 0
. . .

...
...

. . . . . . . . .
...

0 · · · 0 I 0

 , (5.9)

−G−∗C∗ =



−D̂−∗
0 D̂∗

1 I 0 · · · 0

−D̂−∗
0 D̂∗

2 0 I
. . .

...

−D̂−∗
0 D̂∗

3 0 0
. . . 0

...
...

. . . . . . I
−D̂−∗

0 D̂∗
n 0 · · · 0 0


, (5.10)

−G−1bf =


D̂−1

0 b
0
...
0

 ,−G−∗lf =


D̂−∗

0 l
0
...
0

 . (5.11)

By denoting xi,j ∈ CN as the jth column of Xi, from x1,j+1

...
xn,j+1

 =
(
−G−1C

) x1,j

...
xn,j

 (1 ≤ j ≤ k − 1),

we have the recursion relation,

x1,j+1 =
∑n

i=1

(
−D̂−1

0 D̂i

)
xi,j (1 ≤ j ≤ k − 1),

xi,j+1 = xi−1,j (2 ≤ i ≤ n, 1 ≤ j ≤ k − 1).
(5.12)

Since,

xi,j = xi−1,j−1 (2 ≤ i ≤ n, 2 ≤ j ≤ k − 1),

the sequence {x1,j} can be expressed as,

x1,j =
min(j−1,n)∑

i=1

(
−D̂−1

0 D̂i

)
xi−(i−1),j−1−(i−1)

=
min(j−1,n)∑

i=1

(
−D̂−1

0 D̂i

)
x1,j−i (2 ≤ j). (5.13)
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The recursion relation for the sequence {x1,j}k
j=1 (5.13) is identical to the kth

nth-order Krylov subspace, Kn
k

(
{−D̂−1

0 D̂i}n
i=1; D̂

−1
0 b

)
. Clearly from (5.12), the

sequences {xi,j}k
j=1, for i = 2, . . . , n are subsequences of {x1,j}k

j=1. This proves (5.6)
and (5.8).
Similarly by denoting yi,j ∈ CN as the jth column of Yi, from y1,j+1

...
yn,j+1

 =
(
−G−∗C∗)

 y1,j

...
yn,j

 (1 ≤ j ≤ k − 1),

we have the recursion relation,

yi,j+1 =
(
−D̂−∗

0 D̂∗
i

)
y1,j + yi+1,j (1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 1),

yn,j+1 =
(
−D̂−∗

0 D̂∗
i

)
y1,j (1 ≤ i ≤ n− 1).

(5.14)

Since,

yi,j+1 − yi+1,j =
(
−D̂−∗

0 D̂∗
i

)
y1,j (1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 1),

we have,

y1,j =
min(j−1,n)∑

i=1

(
−D̂−∗

0 D̂∗
i

)
y1,j−i. (5.15)

The recursion relation for the sequence {y1,j}k−1
j=0 (5.15) is identical to the kth

nth-order Krylov subspace, Kn
k

(
{−D̂−∗

0 D̂∗
i }n

i=1; D̂
−∗
0 l
)
. This proves (5.7).

REMARK 5.1. The relationship (5.8) has already been noted in [8, 11]. For the
second-order system, the relationship (5.6) combined with (5.8) has been denoted as
the embedding of the second-order Krylov subspace in the standard Krylov-subspace
generated from the equivalent first-order system. In Remark 6.2. of [8], it is
mentioned that Theorem 5.2. of [8] is enough to extend their moment-matching
theorem for first-order systems to higher-order systems. This is not fully precise
since the block structure of −G−∗C∗ is different from that of −G−1C. Relation
(5.7) is needed to fully establish their claim.

REMARK 5.2. The equivalent first-order system here has been constructed by the
shift-“before”-linearization procedure. In this procedure, the effect of the nonzero
shift s0 is taken into account before forming the equivalent first-order system.
Lemma 5.1 states that by selecting a particular form of the first-order system and
conducting a shift-“before”-linearization, the 1st block of the standard Krylov
subspace generated by the equivalent first-order system spans the same subspace as
the kth nth-order Krylov subspaces independent of the value of the shift s0. This
implies that the nth-order Krylov subspaces can be constructed by generating the
standard Krylov subspaces of the equivalent first-order form and then extracting the
necessary components.
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REMARK 5.3. By observing the block structure of −G−1C, one can see that this
does not conform to the block structure required for application of the theorem by
Freund [6]. This discrepancy arises from the difference between
shift-“before”-linearization and shift-“after”-linearization. Since the matrices are
different, the standard Krylov subspaces generated by the two equivalent first-order
systems are different. But still one can prove that the 1st block of the standard
Krylov subspaces span the same subspace, and thus correspond to the nth-order
Krylov subspace. In the shift-“after”-linearization used by Freund, the matrices
have the following form,

Mi := −D̂−1
0

l−i∑
j=0

sj
0Di+j , i = 1, 2, . . . , l, (5.16)

−G−1
F CF =


M1 M2 M3 · · · Mn

s0M1 s0M2 s0M3 · · · s0Mn

...
...

...
...

...
sn−1
0 M1 sn−1

0 M2 sn−1
0 M3 · · · sn−1

0 Mn



+



0 0 · · · · · · 0

I 0
. . .

...

s0I I 0
. . .

...
...

. . . . . . . . .
...

sn−2
0 I · · · s0I I 0


, (5.17)

bfF =


b

s0b
...

sn−1
0 b

 , G−1
F bfF =


I

s0I
...

sn−1
0 I

 D̂−1
0 b . (5.18)

Let us define the matrix XF ∈ CNn×k,

XF =

 XF
1
...

XF
n

 . (5.19)

whose columns span the standard Krylov subspace Kk(−G−1
F GF ;G−1

F bfF ). By
denoting xF

i,j ∈ CN as the jth column of XF
i , from xF

1,j+1
...

xF
n,j+1

 =
(
−G−1

F CF

) xF
1,j
...

xF
n,j

 (1 ≤ j ≤ k − 1),

we have the recursion relation for,

xF
i,j =

min(j−1,i−1)∑
k=0

(
i− 1

k

)
xF

1,j−ksi−1−k
0 (1 ≤ i ≤ n, 1 ≤ j ≤ k),

xF
1,j =

n∑
i=1

MixF
i,j−1 (2 ≤ j ≤ k).

(5.20)
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This yields the same expression for the sequence {xF
1,j}k

j=1 as (5.13). Thus we see
that,

span(X1) = span(XF
1 ) , (5.21)

span(XF
i ) ⊂ span(XF

1 ), i = 2, . . . , n . (5.22)

This result implies that it does not matter whether one conducts a shift- “before”
-linearization or shift- ”after” -linearization as long as the 1st block of the generated
standard Krylov subspace is extracted. Though it is not proven here, numerically it
is also observed that for equivalent first-order systems which are called companion
forms, the columns of the 1st block span the nth-order Krylov subspace. One can
further remark that since shift-“before”-linearization results in a sparser matrix, it is
computationally more efficient.

REMARK 5.4. Due to the inclusion of the nth-order Krylov subspaces in the first
block of X and Y, one can always construct projection subspaces spanned by the
columns of the matrices X̃ and Ỹ,

X̃ :=


X1 0 . . . 0

0 X1
. . .

...
...

. . . . . . 0
0 · · · 0 X1

 , Ỹ:=


Y1 0 . . . 0

0 Y2
. . .

...
...

. . . . . . 0
0 · · · 0 Yn

 , (5.23)

such that,

span(X) ⊂ span(X̃), span(Y) ⊂ span(Ỹ). (5.24)

Projecting the coefficient matrices C and G of the equivalent first-order system onto
these subspaces, and then converting back to the original nth-order system results in
coefficient matrices which coincide with those obtained from projecting the
nth-order system onto the nth-order Krylov subspaces. This type of projection has
been conducted for the second-order case in [8, 12, 10].

REMARK 5.5. The most general transfer function, whose output depends linearly
on derivatives of the state space variable x, can be expressed as,

H(s) =

(
n−1∑
i=0

siV∗
i

)(
n∑

i=0

siDi

)−1

B, (5.25)

where B ∈ CN×p for some p and {Vi ∈ CN×q}n−1
i=0 for some q. In this case one must

construct X and Y such that,

Kn
k

(
{Ai

r}n
i=1;D

−1
0 B

)
⊂ span (X) , (5.26)

Kn
r

(
{Ai

l}n
i=1;D

−∗
0 [V1, · · · ,Vn−1]

)
⊂ span (Y) , (5.27)

for k + r moment matching.

6. Concluding Remarks. We have presented moment matching theorems for
nth-order linear dynamical systems in the context of nth-order Krylov subspaces.
The definition that is provided for nth-order Krylov subspaces is a generalization of
standard Krylov subspaces to higher-order systems. The main theorem states that if
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the right and left projection subspaces in the Krylov subspace based model
reduction include the nth-order Krylov subspaces, then one can obtain the desired
moment matching properties. The theorem is stated for the nth-order system
without the need for a transformation to an equivalent first-order system. This
eliminates complications of linearization involving selection of matrices and auxiliary
variables. An additional advantage is preservation of the nth-order system in the
model reduction, as well as preservation of the structure of the coefficient matrices.
We have also shown the connections between the nth-order Krylov subspace and
standard Krylov subspaces generated from selected equivalent first-order systems.
The nth-order Krylov subspace is contained as the 1st block in the standard Krylov
subspaces generated. This justifies the use of standard Krylov subspaces as a tool
for generating the nth-order Krylov subspace. It has also been shown that for a
particular equivalent first-order system, the differences of shift-“before”-linearization
and shift-“after”-lineariztion are functionally irrelevant, in that the columns of the
1st block still span the nth-order Krylov subspace generated incorporating the shift.

Appendix.
Lemma A.1. Define the matrix valued functions f, g : C → CN×N ,

g(s) = I−
n∑

i=1

siAi,

f(s) = g(s)−1,

(A.1)

where Ai ∈ CN×N , 1 ≤ i ≤ n, are given matrices. Then the coefficients Ei ∈ CN×N

of the Taylor series expansion of f(s) at s = 0,

f(s) =
∞∑

i=0

Eisi , (A.2)

are given by the recursion,

E0 = I, (A.3)

Ek =
min(k,n)∑

i=1

Ai Ek−i (1 ≤ k) (A.4)

=
min(k,n)∑

i=1

Ek−i Ai (1 ≤ k) . (A.5)

Proof. Since g(s) is of nth-order, all derivatives of order n + 1 and higher are zero.
Evaluating these at s = 0, we have,

g(0) = I, g(k)(0) = −k!Ak (1 ≤ k ≤ n).

By taking the derivatives of the equation f(s)g(s) = g(s)f(s) = I with respect to s
and evaluating them at s = 0, we obtain the recursion,

f(0) = I,

f (k)(0) =
min(k,n)∑

i=1

k!
(k − i)!

fk−i(0) Ai (1 ≤ k)

=
min(k,n)∑

i=1

k!
(k − i)!

Ai fk−i(0) (1 ≤ k) .
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Since the coefficients of the Taylor series are defined as,

Ek =
1
k!

f (k)(0) ,

the recursion relation holds.
Lemma A.2. Let {Ei}∞i=0 be the sequence of matrices defined in Lemma A.1. Let
us additionally define,

E−k = 0 (1 ≤ k < n) . (A.6)

Then,

Ei+j = EiEj +
n−1∑
l=1

Ei−lAl+1Ej−l , (A.7)

for all i, j ≥ 0.
Proof. We prove this by induction. For i, j = 0,

E0 = E0E0 = I .

Assume the relation holds for 0 ≤ i ≤ k and 0 ≤ j ≤ r. From Equation (A.4),

E(k+1)+r =
min(k+1+r,n)∑

i=1

Ai E(k+1+r)−i

=
min(k+1+r,n)∑

i=1

Ai

[
Ek+1−iEr +

n−1∑
l=1

E(k+1−i)−lAl+1Er−l

]

=

min(k+1+r,n)∑
i=1

Ai Ek+1−i

Er

+

min(k+1+r,n)∑
i=1

Ai
n−1∑
l=1

E(k+1−i)−lAl+1Er−l


= Ek+1Er +

n−1∑
l=1

min(k+1+r,n)∑
i=1

Ai E(k+1−l)−i

Al+1 Er−l

= Ek+1Er +
n−1∑
l=1

Ek+1−lAl+1 Er−l .

and we see that the relation holds for 0 ≤ i ≤ k + 1 and 0 ≤ j ≤ r. Similarly, from
Equation (A.5),

Ek+(r+1) =
min(k+r+1,n)∑

i=1

E(k+r+1)−i Ai
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=
min(k+r+1,n)∑

i=1

[
EkEr+1−i +

n−1∑
l=1

Ek−lAl+1E(r+1−i)−l

]
Ai

= Ek

min(k+r+1,n)∑
i=1

Er+1−i Ai


+

min(k+r+1,n)∑
i=1

n−1∑
l=1

Ek−lAl+1E(r+1−i)−l Ai


= EkEr+1 +

n−1∑
l=1

Ek−lAl+1

min(k+1+r,n)∑
i=1

Er+1−l−iAi


= EkEr+1 +

n−1∑
l=1

Ek−lAl+1 Er+1−l .

and we see that the relation holds for 0 ≤ i ≤ k and 0 ≤ j ≤ r + 1. Combining these
two, the relation holds by induction.
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