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Zener’s Model(1937)

� Obtained closed form algebraic
relation for Qted of a beam.

� Experimentally verified.
� Based on Euler-Bernoulli beam

theory

C.Zener, Physical Review, 1937,pp230-235

Applicable geometry is restricted.
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Outline

� Governing equations (Non-dimensionalized form)

� Finite Element Discretization
� Time-harmonic response

– Forced response
– Modal response 

� Closure
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� Equations obtained from thermodynamical principles
� Polysilicon is linear elastic, MEMS deformations are small.

Governing Equations(Non-dimensionalized form)

-Assume linear elasticity.
-Temperature fluctuations are small

(Removes non-linearity in energy balance)

7106.4 −×

8101.1 −×

Balance of  linear momentum

Energy Balance

(PolySilicon values have been used for ξ.)

Weak coupling

Strong coupling
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Finite Element Discretization
� Weak form

3. Coupling term has relation,

1. M and C are singular, K is unsymmetric.

2. Diagonal blocks of M,C, and K are s.p.d.

� Discretized system of equations
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Time-harmonic Response
� Would like to evaluate: the Quality factor(Q )

Modal response

Assume  time-harmonic response.

Forced response Evaluate transfer function
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First-Order Form(GEP)
� By introducing an auxiliary variable we obtain a 

generalized eigenvalue problem(GEP).

Formulation where we obtain two Symmetric but Indefinite matrices

Increases size
Quadratic eigenvalue problem

2Nu+Nθ
67%(2D), 75%(3D) increase

N=Nu+Nθ

GEP
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Perturbation Method
� Exploit weak coupling in balance of linear momentum

1.Solve for initial guess. 

2.Compute corresponding thermal vector

3. Solve for update by adding constraint

0. Assume solution is equal to the mechanical
problem plus a small perturbation. 

Reduces size
2Nu+Nθ  GEP

Nu�GEP
Nθ , Nu +1 linear solve

Nu GEP

Nθ linear solve

Nu+1 linear solve

Decreases to 27%(2D),  40%(3D) 

Use LU from GEP
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Numerical example:Beam Structure
� 2D Plane Stress assumptions

W.-T.Hsu, J.R.Clark,C.T.-C.Nguyen,Transducers’01,pp1110-1113
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ROM of the Forced Response

� Compute transfer function from forced response. 

Compute a reduced order model, accurate around a center 
frequency, based on the Second Order Arnoldi method.

1. Generate sequence of vectors(spans 2nd Order Krylov subspace) which can 
describe the response.

2. Construct ROM by a Galerkin projection of the system onto the generated 
smaller subspace of solutions.

Must solve size N system for each data point. Computationally expensive.
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SOAR for the Thermoelastic problem
� SOAR procedure(Bai and Su 2004)

� Choice of basis for projection 

(2n)

M/T split basis

Z. Bai and Y. Su. SIAM J. Sci. Comp., 2004.

(n)

SOAR basis
Preserves matrix structure: 

1. h.p.d of diagonal submatrices 
2. zero structure
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Numerical Example:Ring resonator
� 2D Plane Stress
� NDOF=38989
� ROM  =      21

20(SOAR      Basis) 
10(M/T Split Basis)

-Iterations:
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Numerical Example:Ring resonator
� 2D Plane Stress
� NDOF=38989
� ROM  =      21

Forced at 705.5[MHz]

Hours.
Seconds.

-Iterations:

100 points

20(SOAR      Basis) 
10(M/T Split Basis)
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Closure
� Modal Response

– Perturbative structure
– 2Nu+Nθ GEP

� Forced Response
– SOAR
– M/T split basis 

� Extends to incorporate anchor loss with
Perfectly Matched Layers(PML)

NuGEP
Nθ , Nu+1 Linear solve

N n

Preserves  structure
Higher-order accuracy

Complex symmetric matrices
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Reference Slides
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Zener’s Model
� Proposed by Zener in 1937.

C.Zener, Physical Review, 1937,pp230-235

-Evaluated Q of a beam in flexural mode

Linear coeffecient of
thermal expansion

Specific heat
(const. volume)

Thermal conductivity

Reference temperature

Density

Young’s modulus

Beam width
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Thermoelastic Damping
� Energy dissipation mechanism due to coupling between the 

mechanical and thermal domain.

Apply external forces Time
varying
local 
stresses

Time
varying
local 
strains

Local
temperature
gradients 

Irreversible
heat flow

Resulting
in energy 
dissipation

Mechanical Domain Thermal Domain
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� Equations obtained from thermodynamical principles
� Polysilicon is linear elastic, MEMS deformations are small.

Governing Equations

Balance of  linear momentum

Energy Balance

-Assume linear elasticity.
-Temperature fluctuations are small

(Removes non-linearity in energy balance)
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Non-dimensionalization
� Expression for coefficients.

7106.4 −×

8101.1 −×
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First-Order Form(GEP)
� By introducing an auxiliary variable we obtain a 

generalized eigenvalue problem(GEP).

1.                                     --RHS matrix is s.p.d

2.                                     --Symmetric but indefinite matrices

Increases size
Nu+Nθ quadratic eigenvalue problem 2Nu+Nθ GEP

67%(2D), 75%(3D) increase
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Example with PML:Michigan FF Beam

TED+PML PML



29

Jacobi-Davidson Type of interation

The residuals of the eigenvalue problem are,

Then,

By adding a regularizing constraint on u,

If we now drop the coupling term we obtain the Perturbation Method equations. 
This iteration may be repeated to further refine the solution.
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Example:Ring Resonator with PML
� 2D Plane Stress
� PML parameter f0=20
� NDOF=38989

ROM  =      21 Normal     n=20
M/T, Real n=10
M/T+Real n=5
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TED vs. TED+PML(Ring Resonator)
TED+Anchor LossTED
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Numerical Example:Ring resonator
� 2D Plane Stress
� NDOF=38989

ROM  =      41
Normal     n=20
M/T, Real n=10
M/T+Real n=5
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Numerical Example:Ring resonator
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Numerical Example:Ring resonator
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Choosing the Galerkin Projection Basis
� Choice of basis 

(2n)

m/t split basis

real basis [diagonal submatrices remain s.p.d]

[matrix structure
(zeros) preserved]

(2n)(n)

(4n)

2nd order accurate for pure 
mech. case

complex basis

nonsplit basis

Preserves 
1. s.p.d.(h.p.d.) of 
diagonal submatrices
2. zeros in matrices

Only TED 

Preserves 
1. complex symmetry of diagonal 

submatrices
2. zeros in matrices

TED + Perfectly Matched Layer


