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1 INTRODUCTION

Over the past few decades, the increase of computing power has fueled a tremendous progress in
the area of computational mechanics. In terms of hardware, the average desktop of today can
conduct more floating point operations per second than some of the super computers 20 years
ago. In terms of software, industrial strength Finite Element Method (FEM) packages such as
Abaqus [1] and educational packages such as MATLAB [45] greatly facilitate the accessibility to
the subject. Though the environment surrounding computational mechanics has changed in this
way, the fundamental procedure one must go through in using computational mechanics as a tool
for understanding behavior of physical systems has not changed at all. The numerical modeling
procedure one must go through can be stated as,

1. understand the physical phenomenon of interest correctly,

2. develop a model reflecting the correct physics,

3. compute the behavior of the phenomenon efficiently.

This procedure of numerical modeling must be closed in a loop with verification with actual ex-
perimental observations or results. Lack in any of the steps can lead to utterly wrong results and
unbelievably inefficient use of computational resources.

As a graduate student at the University of California, Berkeley, I have been a member of
SUGAR [21], a multidisciplinary research group involved in constructing computer aided design
(CAD) tools for the simulation of Microelectromechanical systems (MEMS). The group consists of
members from Mechanical Engineering, Civil and Environmental Engineering, Math, and Computer
Science and also collaborates with people from Electrical Engineering. From those constructing
MEMS devices in the Mechanical and Electrical Engineering Department I have learned the difficul-
ties and importance of experimentation. From those in the Math and Computer Science Department
I have learned and gained mathematical insight along with skills in efficient programming.

In this environment I have extensively trained myself not only in mechanics but also in mathe-
matics, which has lead to my M.A. in Math with an emphasis on Numerical Linear Algebra. I have
also acquired software development skills, contributing to the development of a resonant MEMS
simulation software HiQLab [9] written in C++, LUA, and MATLAB. HiQLab can run on a serial
computer as well as a multiple processor machine. In this code, I have implemented the efficient
methods for simulating MEMS devices which I have developed, requiring the procedure of numerical
modeling I have outlined above.

In Section 2, I will present my contributions as well as my research interests in the context
of simulation of MEMS resonators, which has been the focus of my research at the University of
California, Berkeley. In Section 3, I will present my future goals based on these research interests.

2 SIMULATION OF DAMPING IN MEMS RESONATORS

MEMS is the broad term used to describe micron-sized devices that interact not only with the
electrical and mechanical domain, but also with the thermal and fluidic domain [43]. Within MEMS,
the focus of my research has been on understanding and simulating devices called resonant MEMS,
which have applications in radio frequency (RF) wireless technology as potential replacements for
off-chip bulky components, reducing the total size, cost, and energy consumption of devices like
wireless transceivers [40, 39]. The performance of these devices are defined by the quality factor,
Q, which is defined as the maximum stored energy divided by the energy dissipation per radian of
oscillation. High Q values are desired, but can be limited by energy dissipation mechanisms such as
anchor loss [25], thermoelastic damping [16, 2, 54, 42, 25, 55], air damping [25, 12], material losses,
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and ohmic loss. The design process of these MEMS resonators can be accelerated significantly by
accurate and efficient numerical simulations which can predict the amount of damping in the system,
and ultimately Q.

Below I have categorized my contributions, their importance, and how they are related to my
current and future research interests.

2.1 Thermoelastic damping: Reduced-order modeling

Thermoelastic damping is the mechanism in which energy is dissipated through the coupling be-
tween the mechanical and thermal domain. Mechanical oscillation couples into the thermal domain
via volumetric expansion causing local temperature gradients. This in turn produces heat flow in
the system leading to energy dissipation. This mechanism has been experimentally observed to be
a prominent source of damping in micromechanical beam resonators. Despite its recognition, the
MEMS community has been restricted to analyzing this mechanism for resonators of beam type,
solely because the only accessible closed formula solution is applicable to only this type of geome-
try [57].

I have modeled this phenomenon by solving the coupled linearized balance of linear momentum
and linearized heat equation through a finite element discretization. Though this approach is not
necessarily new [20, 14, 33, 56], what I have focused on is observing the structure of the underlying
equation. The linear system of equations that one must solve has a block structure with symmetry,
as well as a perturbative structure. In the course of evaluating the quality factor Q of a resonant
system, one must either solve for the eigenvalues of the system or evaluate a transfer function.
Evaluation of the transfer function can be extremely expensive for a large scale system, since one
must solve a linear system of equations at each step. To circumvent this, I have developed a structure
preserving Krylov-subspace based model reduction method based on the second-order system which
is capable of computing the transfer function model up to 60 times faster than a full finite element
discretization and yet is still as accurate. The simulation of real fabricated devices confirms the
validity of our proposed method [29]

The feature of my reduced-order model (of the second-order system), which allows good accuracy,
is its moment-matching property of the transfer function. The moments are defined as the coefficients
of the power series expansion of the transfer function around a specified point. The standard
approach to obtaining matching moments for second-order systems is to convert to an equivalent
first-order system and conduct standard Krylov subspace model reduction techniques [4, 35]. What
I have done is to prove a general moment-matching theorem applicable to second-order and higher-
order systems in their original form without a conversion step to an equivalent first-order system [31,
32]. This can facilitate proofs for moment-matching as well as construction of structure preserving
reduced-order models for various higher-order linear dynamical systems such as the modeling of
many physical systems: electromagnetics, mechanical or structural, thermal, and those coupling any
number of these systems.

2.2 Anchor loss: Numerical linear algebra, Parallel computing

Resonant MEMS devices are fabricated on top of a Silicon or other semi-conductor substrate orders
of magnitudes larger than the device and thus the substrate can be considered a semi-infinite half
domain. As the MEMS device resonates, this motion couples with the underlying substrate through
its anchors, sending non-returning waves into the substrate. This energy dissipation mechanism,
called “anchor loss” in the MEMS community, has been experimentally observed to be prominent
in resonant MEMS at high-frequencies, larger than the MHz range.

To model this damping phenomenon arising from an infinite domain behavior with a finite do-
main, we employ boundary conditions which are called radiation boundary conditions. Among the
various types of radiation boundary conditions [22], we have chosen the Perfectly Matched Layer
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(PML) absorbing boundary condition which was developed by Bérenger [7] for solving Maxwell’s
equation and later adapted in a displacement based finite element method setting by Basu [6]. The
choice was made due to its ability to preserve the sparsity structure of the resulting finite element
matrices. An issue that has been addressed frequently in the application of PMLs is the optimal
selection of PML parameters for a desired accuracy in approximating the radiation boundary con-
dition [13, 23]. It is crucial that one be able to know this from a users standpoint. I have developed
heuristics for selecting optimal parameters in the PML for a 1D scalar wave problem, extending the
work of Bindel [8], and have confirmed them in higher dimensions [29]. Here, optimality is defined
in terms of the least computational effort required for a desired accuracy in the solution.

The application of PMLs to a linear elastic problem changes the structure of the discretized
finite element mass and stiffness matrices drastically from a positive definite pencil to a complex-
valued symmetric pencil. This has large consequences in solving linear systems involving a linear
combination of these matrices as well as eigenvalue problems. To evaluate the quality factor Q of a
resonant MEMS device, one can solve for the complex-valued eigenfrequencies of the system. The
imaginary part of the eigenfrequency arises from the existence of damping. For devices with very
small damping, the imaginary part of the complex-valued eigenfrequency can be orders of magnitude
smaller than the real part. To obtain sufficient accuracy in the imaginary part to which the accuracy
of the quality factor depends on, one is faced with a fine discretization. This leads to a large scale
generalized eigenvalue problem. An added difficulty can arise when the eigenvalue corresponding to
the mode shape of interest of the device is not at the exterior of the eigenvalue spectrum but in the
interior of the spectrum.

Standard methods due not exist for the computation of interior eigenvalues of a generalized
complex-symmetric large scale eigenvalue problem. The difficulties lie in the following reasons. Most
large scale eigenvalue methods concentrate on Hermitian positive definite problems, and solving
for interior eigenvalues of Hermitian positive definite systems can already be difficult due to the
required step of solving large scale indefinite linear systems [17, 3] in the eigenvalue computation
procedure. This situation greatly contradicts the current needs, since any system with a damping
component is no longer Hermitian positive definite. To solve the generalized complex-symmetric
eigenvalue problem arising from the application of PMLs, I have developed a geometric-multigrid [49]
preconditioned Jacobi-Davidson QZ [19] method [29]. To the best of my knowledge, this is the first
successful attempt in applying geometric multigrid to these linear systems. This is also the first
application of the Jacobi-Davidson QZ solver to problems on the order of millions of degrees of
freedom. I have successfully applied this to simulate a class of MEMS disk resonators that are
fabricated for a high-operating frequency [51].

In order to compute the generalized eigenvalues of a complex-symmetric system on the order
of millions of degrees of freedom, I have also had to employ parallel computing techniques. To
facilitate the management of parallel linear algebra objects such as vectors and matrices, I have used
the linear solver package PETSc [5] as well as Trilinos [24]. These packages have been used through
the software HiQLab mentioned in a subsequent section.

2.3 Electromechanically coupled systems: Reduced-order modeling

In the design of a resonant MEMS device as a component in an electrical circuit, the engineer is
interested in the behavior of the mechanical device at a specific frequency and mode of vibration,
namely at resonance. The device at this frequency can be modeled by a single degree of freedom
system through lumped mechanical parameters. From an analogy between a single degree of free-
dom mechanical and electrical system, these lumped mechanical parameters can be translated to
equivalent circuit model parameters [28, 47, 48]. The engineer can then use these few parameters to
effectively model the complex mechanical resonator and subsequently simulate the entire response
of the circuit including the mechanical system with ease to evaluate the quality factor Q.

In many papers, one encounters formulas to evaluate equivalent circuit parameters, but in most
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cases they are either based on parallel plate assumptions [53, 11] or derived for other special geome-
tries [52, 15, 44, 41]. As the geometry of the devices become more complex such assumptions may
not apply, and numerical evaluation is necessary. In the area of piezoelectric bulk acoustic wave res-
onators, finite element methods have been applied to develop a process to extract equivalent circuit
parameter expressions [34, 38]. Unfortunately this type of approach has not been extended into the
MEMS computational domain.

As opposed to the ad hoc parameter extraction process presently used in resonant MEMS design,
I have developed a systematic parameter extraction process based on a variational framework for
modeling electrostatic and piezoelectric electromechanically coupled systems. The new framework
allows one to treat systems with general geometry and to incorporate the electromechanical coupling
effect into the mechanical modes of vibration. The extracted equivalent circuit model parameters
produce a transfer function with relatively accurate behavior near the resonance frequency with much
less computation time than the full model, and also represents features that cannot be obtained by
current simplifying parallel plate assumptions [29]. By using this method to simulate a resonator
excited by electromechanical forces across a dielectric material (Internal Dielectric Drive [37, 26]),
I have been presented with one of the two best presentation awards at the Berkeley Sensor and
Actuator Center (BSAC) Industrial Advisory Board meeting.

2.4 HiQLab

HiQLab [9] is a finite element tool for simulating resonant MEMS that Bindel [10] initiated and
continues to develop in collaboration with our research group SUGAR [21] at the University of
California, Berkeley. The software’s aim is to be able to make available a tool for accurately modeling
damping behavior in resonators, since the current widely available CAD tools are able to simulate
the resonance frequencies but are not able to model the damping well. HiQLab is written mainly
in C++, with an interface to the scripting language LUA [27] and the popular commercial software
MATLAB [45].

I have made contributions in developing the software [30] which include but are not restricted to
implementation of thermoelastic elements, electrical circuit elements, and interfaces to the parallel
numerical libraries Trilinos [24] and PETSc [5]. All the simulations I have conducted have been
with this software.

3 FUTURE RESEARCH DIRECTIONS

MEMS simulation and design. I would like to continue working in the modeling of RF MEMS,
simulating other sources of damping and further developing the simulation software HiQLab. In
my current research I have only addressed two sources of damping, but this does not imply that
other sources are not of importance. The effect of air damping which behaves viscously in the lower-
frequency regime and has well known damping models such as squeeze film and Couette damping
have a different behavior in the high-frequency regime. For high-frequency disk resonators, the
performance in air and in vacuum have been experimentally observed to be close, but the reason
for this is not clear [52, 50]. This can be attributed to the complex interaction between the surface
of the resonator moving only nanometers in stroke at very high-frequencies with the discrete nature
of the air molecules surrounding it. I would like to investigate this phenomenon through methods
which can take into account the discreteness of the air molecules, either through the Molecular
Gas Lubrication Method (a continuum type of approach) or the the Direct Simulation Monte Carlo
Method (a quasimolecular approach). By understanding this phenomenon and producing an accurate
model to simulate it, the requirement of packaging resonators in vacuum for high-sensitivity can be
reduced, leading to a huge reduction in costs.

The success in development and fabrication of resonant MEMS has introduced a new paradigm
regarding the originally individual stand-alone MEMS devices as hierarchical building blocks for
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more complex and integrated structures. This approach is similar to the process in which integrated
circuitry (IC) has developed. By combining individual MEMS devices either mechanically, electron-
ically, or by both, in quantities ranging from 2 to 60, successful filter designs with low insertion
and improved band-width have been constructed [36]. I would like to investigate the construction
of reduced-order models of resonator components in the format of a library. If this is possible, a
designer who would like to make a complicated device consisting of hundreds of individual resonators
can essentially pick required components from this library, similarly to how circuit design is done
today without having to solve the electromagnetic field equations. Such a framework can facilitate
the design of complex devices making it systematic, straightforward, and economically feasible.

Reduced-order modeling and eigenvalue problems. In my research, to prove moment-matching
properties in model reduction of higher-order linear dynamical systems, I have introduced the no-
tion of higher-order Krylov subspaces, which are generalization of standard Krylov subspaces. I have
been able to show a connection between the higher-order Krylov subspace of the higher-order linear
dynamical system with the standard Krylov subspace of the equivalent first-order form. I would like
to further investigate this higher-order Krylov subspace in terms of polynomial eigenvalue problems,
and whether they are more or less suitable for computing eigenvalues compared to the standard
method of computing eigenvalues from companion forms. Should they turn out to be advantageous,
they can lead to new and improved methods for computing eigenvalues of polynomial eigenvalue
problems.

I am also interested in the advantage of structure preservation in model reduction. As I have
been able to identify the advantage of structure preservation for increased efficiency in the linear
thermoelastic problem, I would like to investigate if there are other coupled-physics problems which
give rise to structure which one can exploit for more efficient computation.

Radiation boundary conditions and solution methods. I have studied the behavior of PMLs
and its accuracy as well as developed a method to solve the generalized complex-symmetric eigen-
value problem arising from its discretization. Since PMLs is not the only type of radiation boundary
condition, I would like to investigate other types of existing methods such as absorbing boundary
conditions (e.g., local BGT and globalDtN) and infinite elements (e.g., Burnett, Astley-Leis ele-
ments) [22, 46] to see how they effect the structure of the systems of equations one must solve and
how they compare in terms of computation efficiency and performance to PMLs. The method I
have selected as a preconditioner to the generalized complex-symmetric eigenvalue problem was a
multigrid method. I would also like to investigate the effect that the complex-symmetry imposed
by the PML has on the performance of domain decomposition methods as preconditioners, such as
FETI [18], for large scale systems.

The results obtained from this analysis have broad implications since the use of radiation bound-
ary conditions is not restricted to simulation of small MEMS devices but to scattering of electro-
magnetic and acoustic waves on large aircrafts and elastic wave propagation in earthquakes. Under-
standing which radiation boundary is the most efficient for each case and which solution method is
suitable can be invaluable.
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