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High-frequency MEMS resonators (MHz-GHz)

N

€ Applications as small size, low energy consuming
frequency references, filters, and sensors

m 1 Mechanical filter

Radio signal

Filtered signal

Capacitive drive Capacitive sense

Transfer

SEM of 41.5 um radius poly-SiGe disk resonator

Frequency

2008/7/05 WCCM8/ECCOMAS2008 2



Resonator simulation

N
€ Design requires knowledge of Existing
Software
- Frequency and Methods
- Quality factor (Q) ?
_ Maximum Stored Energy 1
Q o Energy Loss per radian ~

Damping
Sy

Tools and methods for evaluating damping in resonant MEMS
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Mathematical problem

N
# Equation of motion discretized with FEM under

harmonic assumption

Quadratic eigenvalue problem.
(—w"M +K) x =0

Complex eigenfrequency

. ||
W = Wy + 10, ng
|

2008/7/05 WCCM8/ECCOMAS2008 4




Overview

N
€ Characteristics of the eigenvalue problem

x Complex symmetry from Perfectly Matched Layers

# Solution method
= Projection methods
= Jacobi-Davidson QZ method (JDQZ)

s Geometric multigrid preconditioned GMRES for the
solution of the correction equation

@ Numerical example of a disk resonator
€ Conclusions
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Damping mechanism: Anchor loss

N

€ Mechanism: Energy loss from radiating waves
escaping into the substrate.

Radial
Eicet Disk resonator

Must modeI |nf|n|te domaln
................................ Siil:')'s'fi"ﬁtié'

SEM of 41.5 um radius poly-SiGe disk resonator Section of disk resonator
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Perfectly Matched Layers (PML)

N

SEM

€ Mechanism: Energy loss from radiating waves
escaping into the substrate.

Radial
forces

Disk resonator

Perfectly Matched Layer

Outgoing waves are absorbed
with zero impedance mismatch at

of 41.5 pum radius poly-SiGe disk resonator PML boundaries.
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Difficulties

.
€ PML implementation:

Generalized eigenvalue problem

Kx = w*Mx

1. Sparse matrices are large (millions and larger) for accurate
results

Requires large scale sparse-eigenvalue methods.

2. Matrices are complex valued symmetric, Non-Hermitian
Complex-valued eigenvalues,
3. Desired modes are not at the exterior of the spectrum but interior

Adds difficulty in the linear solves. Little knowledge
about optimal iterative linear system solution
methods. (for complex symmetric systems).
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Proposed solution

Y . .
1. Sparse matrices are large (millions and larger) for accurate
results

Projection methods.

2. Matrices are complex valued, Non-Hermitian
3. Desired modes are not at the exterior of the spectrum but interior

Elastodynamic equation Geometric multigrid
(SPD pencil without PML) preconditioned GMRES
linear solver
Iterative solvers become = Jacobi-Davidson QZ

expensive for higher accuracy eigenvalue method
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Projection methods

NP,
@ Find eigen pair  (w* x € V) such that

(K—wQM)XLW

€ Galerkin projection(Ritz values,vectors) W =1V
@ Petrov-Galerkin projection W #£V

Select harmonic-Ritz projection for better
approximation of interior eigenvalues.

W= (K-wsM)V
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Jacobi-Davidson QZ (JDQZ)

NUW ‘
€ Harmonic JD method for (K,M) target wé

Given subspace V), W = (K — ng) %

1. Find approximate eigenpair (w”, u)
ueV (K—w’M)ul W

2. Solve correction equation for €

3. Expand subspace
Vnew =V D Span{t}
Whew = YV & span { (K — ng) t}

(Fokkema, Sleijpen, and van der Horst, 1998)
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Correction eguation

N

#Find t L u such that (u+t) is a better
approximation to the desired eigenvector

I-pp") (K—w’M)(I—uu")t=—r
r = (K—w'M)u
p = (K—wiM)ucWw

Must solve linear systems of the form

(K -~ w’M)x=b

=) Geometric multigrid preconditioned GMRES

to non-Hermitian complex-valued linear system
WCCM8/ECCOMAS2008
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Geometric multigrid

L/

Nl tigrid V-cvela
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time

(Demmel, Parallel Computing Notes)
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Geometric multigrid

N

Nl tigrid V-cvela

Smoother

Remove error with 1
large eigenvalue tirme

(Demmel, Parallel Computing Notes)
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Geometric multigrid

N

Nl tigrid V-cvela

Smoother

Remove error with 1
large eigenvalue tirme

(Demmel, Parallel Computing Notes)
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Geometric multigrid

N

Nl tigrid V-cvela

Smoother

Remove error with 1
large eigenvalue

time

(Demmel, Parallel Computing Notes)
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Geometric multigrid

N

Nl tigrid V-cvela

_ :\\V“' ‘V%\ 3 “\
RO v ¥ et e
— SR ,.\‘: \\.
moother ot
2 Coarse grid
Remove error with 1 correction |
large eigenvalue me (Prolongation
operator)

Remove error with
small eigenvalue

(Demmel, Parallel Computing Notes)
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Prolongation operators

L/

& Maps solutions from one level to another with
geometric information

Interpolation P

' _

Coarse level < l Fine level
Weighting P71’
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Smoother for Ax=0Db

N

# No heuristics for choosing appropriate smoother
for complex-valued non-Hermitian case

i> Gauss-Seidel (Restriction in PML parameter selection.)

PML parameters
(3 : Absorption strength 1.5

71, : Wave lengths in PML

Smoothing factor

1.0

<

For convergent smoother, 0 < p < 1 e

= (3 small Restriction for solvability

For small wave reflection
0 0.5 1

=) Tr¥l approx. 1-2 Restriction for accuracy B
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Two grid convergence factor

N
@ Error reduction for multigrid with 2-levels

Fine level: 71 per wave
Coarse level: 72 /2 per wave 1 Gauss-Seidel
09
0.8
(3 : Absorption strength ZZ 2 ﬁﬁeﬁﬂ; #ﬂ%ﬁi
7, : Nodes per wave on - os /7/ i) (oo
fine grid(discretization) (sl ) L
M\ LT (\ ;o
3 at most 1 " /’-k\:{\?@ 7:05_4‘;55{:1‘_
:> At least 6 nodes per 0.1 . PO
wave on coarse grid 06 s 10 12 14 16 18 20 2 u

n
Restriction for multigrid convergence
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JDQZ + GMG preconditioned GMRES

.
€ The performance of JDQZ depends strongly on initial

eigenvalue/eigenvector approximation

=) Use coarse grid solutions as initial starting points.

Interpolation with geometric
multigrid prolongation operator

Coarser level P Desired level
converged solution initial guess
(wcma.rae:r ucmarse) | > (wCOaI‘SE‘-? PuCO&I‘SE‘-)

JDQZ converges in 1-2 iterations (correction equation solves)
to tolerance 1le-10 with good initial guess. Scalability of
iterative method is crucial.
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Numerical example: Disk resonator

# 2nd radial contour mode at 715 [MHZ]

Top view: r displacement Top view: z displacement

Resonator cross section Tpost

Side view: x displacement Side view: z displacement
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Scalabllity of iterative method
(PETSc implementation)
/

€ Scaling with respect to size € Speed-up with respect
to number of processors

Level || Number of DOFS
1 49938
2 197574 1Y
3 977115 60!
4 6140520
o 50
-
© 40
3
GMRES iters. for preconditioned 20,
residual of 1 x 101V for 3 = 1.0 10
Levels 1-2 1-3 11 % 20 40 60

715.7[MHz] || 49(1.2e-09) | 51(1.6e-09) | 41(3.3e-09)
(2nd mode)

NoO. processors
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Conclusions

N
# An algorithm for solving complex-symmetric

eigenvalue problems arising from mechanical
systems with Perfectly Matched Layers (PML)

@ Jacobi-Davidson QZ + geometric multigrid

= Scalable, fast,
¢ converging in 1-2 iterations with coarse grid initial values

= restrictions on PML parameters
+ converging smoother: (3 small

+ converging multigrid : at least 6 nodes per wave on
coarsest grid

+ numerical accuracy : approx. 1-2 wave lengths in PML
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