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High-frequency MEMS resonators (MHz-GHz)

Applications as small size, low energy consuming 
frequency references, filters, and sensors

SEM of 41.5 μm radius poly-SiGe disk resonator
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Resonator simulation

Design requires knowledge of

- Quality factor (Q)

Tools and methods for evaluating damping in resonant MEMS

- Frequency
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Mathematical problem

Equation of motion discretized with FEM under 
harmonic assumption

Quadratic eigenvalue problem.
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Overview

Characteristics of the eigenvalue problem
Complex symmetry from Perfectly Matched Layers

Solution method
Projection methods
Jacobi-Davidson QZ method (JDQZ)
Geometric multigrid preconditioned GMRES for the 
solution of the correction equation

Numerical example of a disk resonator
Conclusions
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Damping mechanism: Anchor loss

Mechanism:  Energy loss from radiating waves 
escaping into the substrate.

Section of disk resonator

Must model infinite domain.

SEM of 41.5 μm radius poly-SiGe disk resonator
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Perfectly Matched Layers (PML)

Mechanism:  Energy loss from radiating waves 
escaping into the substrate.

Outgoing waves are absorbed 
with zero impedance mismatch at 
PML boundaries.SEM of 41.5 μm radius poly-SiGe disk resonator
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Difficulties

PML implementation:

2. Matrices are complex valued symmetric, Non-Hermitian

3. Desired modes are not at the exterior of the spectrum but interior

Generalized eigenvalue problem

1. Sparse matrices are large (millions and larger) for accurate 
results Requires large scale sparse-eigenvalue methods.

Complex-valued eigenvalues, 

Adds difficulty in the linear solves. Little knowledge 
about optimal iterative linear system solution 
methods. (for complex symmetric systems).
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Proposed solution

2. Matrices are complex valued, Non-Hermitian
3. Desired modes are not at the exterior of the spectrum but interior

1. Sparse matrices are large (millions and larger) for accurate 
results

Projection methods.

Elastodynamic equation
(SPD pencil without PML)

Geometric multigrid
preconditioned GMRES
linear solver

Iterative solvers become
expensive for higher accuracy

Jacobi-Davidson QZ
eigenvalue method
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Projection methods

Find eigen pair                             such that

Galerkin projection(Ritz values,vectors)
Petrov-Galerkin projection

Select harmonic-Ritz projection for better
approximation of interior eigenvalues.
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Jacobi-Davidson QZ (JDQZ)

Harmonic JD method for             target

Given subspace

1. Find approximate eigenpair

2. Solve correction equation for

3. Expand subspace

(Fokkema, Sleijpen, and van der Horst, 1998)
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Find           such that              is a better 
approximation to the desired eigenvector

Correction equation

Must solve linear systems of the form

Geometric multigrid preconditioned GMRES
to non-Hermitian complex-valued linear system
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Geometric multigrid

(Demmel, Parallel Computing Notes)
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Geometric multigrid

Remove error with
large eigenvalue

Smoother

(Demmel, Parallel Computing Notes)
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Geometric multigrid

Remove error with
large eigenvalue

Coarse grid
correction
(Prolongation
operator)

Remove error with 
small eigenvalue

Smoother

(Demmel, Parallel Computing Notes)
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Prolongation operators

Maps solutions from one level to another with
geometric information

Interpolation

Weighting
Fine levelCoarse level
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Smoother for

No heuristics for choosing appropriate smoother
for complex-valued non-Hermitian case

(Restriction in PML parameter selection.) Gauss-Seidel

: Absorption strength

: Wave lengths in PML

PML parameters

For convergent smoother,

small

For small wave reflection

approx. 1-2
0 0.5 1

0.5

1.0

1.5
Smoothing factor

Restriction for solvability

Restriction for accuracy
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Two grid convergence factor

Error reduction for multigrid with 2-levels

at most 1
At least 6 nodes per 
wave on coarse grid

: Absorption strength

: Nodes per wave on
fine grid(discretization)

Fine level:

Coarse level:

per wave

/2 per wave Gauss-Seidel

Restriction for multigrid convergence
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JDQZ + GMG preconditioned GMRES

The performance of JDQZ depends strongly on initial 
eigenvalue/eigenvector approximation

Use coarse grid solutions as initial starting points.

Coarser level 
converged solution

Interpolation with geometric
multigrid prolongation operator

JDQZ converges in 1-2 iterations (correction equation solves) 
to tolerance 1e-10 with good initial guess. Scalability of 
iterative method is crucial.

Desired level 
initial guess
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Numerical example: Disk resonator

2nd radial contour mode at 715 [MHz]
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Scalability of iterative method
(PETSc implementation)

Scaling with respect to size Speed-up with respect 
to number of processors

GMRES iters. for preconditioned 
residual of                  for

No. processors

Sp
ee

du
p
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Conclusions

An algorithm for solving complex-symmetric 
eigenvalue problems arising from mechanical 
systems with Perfectly Matched Layers (PML)

Jacobi-Davidson QZ + geometric multigrid
scalable, fast,

converging in 1-2 iterations with coarse grid initial values
restrictions on PML parameters

converging smoother:           small
converging multigrid :  at least 6 nodes per wave on

coarsest grid
numerical accuracy   :  approx. 1-2 wave lengths in PML
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