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Abstract— Surface-micromachined resonators and filters are
attractive for many RF applications. While existing simulation
tools allow designers to compute resonant frequencies, few tools
provide estimates of the damping in these devices. This paper
reports on a new tool that allows designers, for the first time, to
compute anchor losses in high-frequency resonators and account
for sub-surface scatterers. By exercising the tool on a family
of radially driven disk resonators, we show that the anchor
loss mechanism for this class of devices involves a parasitic
mixed-mode bending action that pumps energy into the substrate.
Further, using the tool, we predict a large variation in resonator
quality depending upon film thickness. Our simulation shows that
the source of this variation is a complex radial-to-bending motion
interaction, which we visualize with a root-locus diagram. We
experimentally verify this predicted sensitivity using poly-SiGe
disk resonators having Q’s ranging from 200 to 54,000.

I. I NTRODUCTION

Electromechanical resonators and filters, such as quartz, ce-
ramic, and surface-acoustic wave devices, are important signal-
processing elements in communication systems. Over the past
decade, there has been substantial progress in developing
new types of miniaturized electromechanical resonators using
microfabrication processes [1]. For these micro-resonators to
find ubiquitous application, it is essential that their quality
factors,Q values, be maximized.

The present standard in the design of such resonators is to
manufacture many trial designs and then test them. This costly
and time consuming situation is forced upon designers due to
a lack of adequate design tools. One can use standard finite
element packages to accurately determine resonant frequencies
but it is not possible to accurately determine damped resonant
frequencies – i.e.Q values. The reason for this is that it
is difficult to model the relevant loss mechanisms. In high
frequency resonators, the substrate plays a crucial role in
determining both energy losses from a resonator and the
interactions with nearby resonators. Although there have been
some initial studies of microresonator anchors [2], the results
are mainly qualitative and applicable only to bending modes.
The empirical nature of resonator design is illustrated in a
recent paper, in which a fabrication error resulted in broken
suspension legs and an unanticipated increase in quality factor
[3]. We propose in this paper to use aperfectly matched

layer (PML) method that has recently been extended to time
harmonic elastodynamics [4]. This technology allows us to
efficiently model energy losses to the substrate. Our extension
of the PML technique fits naturally within the standard finite
element code architecture; and, unlike the recently proposed
method of [5], our method accommodates subsurface scatter-
ers, as well as thin-film-coated substrates.

II. SIMULATION TECHNOLOGY

Because MEMS resonators are orders of magnitude smaller
than the substrate on which they sit, the substrate can be
modeled as a semi-infinite domain. To simulate the response
of a semi-infinite domain, one usually uses boundary dampers,
infinite elements, boundary integrals, or exact DtN bound-
ary conditions; see e.g. [6]–[9]. Each of these methods in
some way truncates the simulation domain with an artificial
boundary and tries to absorb outgoing wave energy without
reflection. All have certain failings when it comes to the
resonator problem.

Our approach is to utilize a PML [10]. A PML is a finite
domain that is attached to the outer boundary of a (finite
element) model which contains the system of interest – in our
case a resonator and part of the substrate (with possibly sub-
surface scatterers). The PML is a continuum domain with mod-
uli devised in a fashion such that the mechanical impedance
between the PML and the model is perfectly matched. This
essentially eliminates spurious reflections from the artificial
interface. The PML is finite in extent and thus has an outer
boundary. The presence of an outer boundary requires the PML
to damp the out-going waves before they reflect and pollute
the computation. Using a formulation similar to that in [4],
we apply a complex-valued coordinate transformation [11],
[12] to the standard elastodynamic equations in the PML
region. This coordinate transformation causes waves to be
exponentially damped in their direction of travel; and since
the transformation is continuously differentiable, there are no
impedance mismatches. This transformation effectively turns
the PML into an anisotropic inhomogeneous material with
complex valued moduli.

To computeQ values for the radially driven disk resonators
considered here, we begin with the construction of an axis-



symmetric finite element model of the resonator, its stem, and
a small portion of the substrate. Around the substrate portion,
we place a PML. Next we assemble the finite element matrices
along with the PML contributions. We use bi-cubic elements
which leads to sufficient accuracy at relatively lower CPU cost
when compared to bi-linear and bi-quadratic elements. The
resulting equations are of the classic form

(−ω2M + K)u = 0 , (1)

whereω (eigenvalue) is the complex-valued mode frequency,
M is the mass matrix,K is the stiffness matrix, andu is
the mode shape vector (eigenvector). An important issue with
these equations is that the presence of the PML causes the
system matrices to be complex-valued symmetric as opposed
to real-valued symmetric. This implies that the eigenvectors
are no longer orthogonal to each other in a proper inner-
product space. Thus, one sees that the presence of the semi-
infinite domain couples all modes to each other. This further
implies that even if one can experimentally achieve the pure
excitation of a single mode, there will always be energy
leakage to other modes of vibration (even if the system
behaves in a mathematically ideal fashion).

The eigenvalues of Eq. 1 are related to individual mode
quality factors by the relationQ = Real[ω]/2Imag[ω], where
ω is the complex valued eigenvalue for each computed mode
of vibration [13]. If a resonator is properly designed, then the
experimentally measuredQ should be close to (but slightly
below) our theoretically determinedQ. To find the eigenvalues
of interest, we note that resonators are designed to operate
at the frequency of a radial vibration mode of an ideal
unsupported disk. We use this ideal operating frequency in
an Arnoldi shift-and-invert method to compute the closest
complex-valued eigenvalues. The first such computed mode
has a highQ and is typically dominated by radial motion
but also displays some small bending motion. The bending
motion is unavoidable due to the presence of the anchor; pure
radial modes are not possible in anchored systems. The second
closest mode is associated with a bending dominated motion
and has a much lowerQ.

An alternate method of computingQ values is to explicitly
compute a Bode plot by performing a forced motion simulation
and then to determineQ in the same fashion as it is done ex-
perimentally. When using this technique, a drive force pattern
is explicitly imposed upon the outer edge of the resonator and
the response on the edge is computed in order to determine the
transfer function for the Bode plot. Full details of our PML
approach are reported in [14].

III. A PPLICATIONS: POLY-SIGE DISK RESONATORS

To test our simulation technology on anchor loss, a number
of poly-Si0.4Ge0.6 disk resonators with31.5 µm and41.5 µm
radii were characterized; there were four31.5 µm disks and
five 41.5 µm disks. Ge spacers were used to define the
electrode to resonator gap at120 nm on average. Figure 1
shows one such41.5 µm radius resonator. The disk itself
is supported on a conical post which upper radius1.49 µm,

Fig. 1. SEM of41.5 µm radius poly-SiGe disk resonator.

lower radius1.61 µm, and nominal height1 µm. The drive is
clearly not fully axis-symmetric but we model it as such for
simplicity. For the material we use a density of4127 kg/m3

computed by linear interpolation and assume a Poisson ratio
of 0.28; the Young’s modulus was estimated from an acoustic
measurement as139 GPa.

A. Experimentation

For each resonator, the transmission curve was measured
with a network analyzer, under a vacuum of100 µtorr.
The input signal and the bias voltage were applied to the
resonator proof mass, while the output signal was sensed on
two electrodes at the same time through a power combiner. A
SEM on each of the samples was also performed to measure
the cross-section dimensions, including stem size, interconnect
stack, and most importantly the structural layer thickness. A
thickness distribution across the wafer due to cross-load and
cross-wafer non-uniformity during the poly-SiGe structural
layer deposition created resonators with differing thicknesses.

Figures 2(a) and 2(b) show two extreme examples of the
transmission plots for the41.5 µm disks. The quality factor
was measured as low as 200 (Fig. 2(a)) and as high as 54,000
(Fig. 2(b)); these values are computed from the measured
transmission data by dividing the center frequency by the
−3 dB peak width. The main difference between the two
resonators is that their structural layer thicknesses differ by
6%. The fact that the quality factors vary so much was
predicted by our simulations prior to the experiments and
motivated the present study.

B. Basic Loss Mechanism: Radially Driven Response

Figure 3 shows the computed in-phase radial and vertical
displacements in one of the disks when it is driven with a
radial forcing on its outer edge;Q = 140, 000. The radial
motion is coupled to a small vertical motion due to the stem
as mentioned earlier. The pattern of the vertical motion clearly
has the look of a bending motion. Thus, the dominant mode
for this disk is not a pure radial motion. The bending motion
of the mode along with the Poisson effect induces a vertical



(a) Measured transmission data for disk thickness1.55 ±
0.02µm.

(b) Measured transmission data for disk thickness1.64 ±
0.02µm.

Fig. 2. Measured transmission curves for two different thickness41.5 µm
radius resonators.

motion in the stem which pumps displacement waves into the
substrate, where they carry away the energy of the resonance.

C. Design Sensitivity: Thickness Variations

Figure 4 shows measuredQ values from the four31.5 µm
disks and Fig. 5 shows measuredQ values from the five
41.5 µm disks. The error bars on thickness are indicative of
the limits of our SEM geometry measurement method. Also
shown in Figs. 4 and 5 are simulation data using the measured
geometry from the resonators. The highQ curve is computed
from the first eigenvalue and the lowerQ curve is computed
using the next nearest eigenvalue. The mode shape associated
with this second eigenvalue is dominated by a bending type
displacement pattern.

For the41.5 µm disks the agreement in value is good and
the trend is captured well. The agreement gives good validation

Fig. 3. Radial and vertical displacement fields illustrating the mode mixing.
Disk radius is41.5 µm and film thickness is1.6 µm. The drive frequency is
45.04 MHz andQ = 140, 000. Displacement contours are in units ofµm.
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Fig. 4. Measured and computed quality factors in31.5 µm radius disk with
varying film thickness. Upper curve indicatesQ from first eigenvalue. Lower
curve indicatesQ from next nearest eigenvalue.
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Fig. 5. Measured and computed quality factors in41.5 µm radius disk with
varying film thickness. Upper curve indicatesQ from first eigenvalue. Lower
curve indicatesQ from next nearest eigenvalue.
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Fig. 6. Root-locus plot parameterized by varying film thickness. Lower curve
corresponds to the first mode and the upper curve to the next nearest mode.

to our chosen simulation technology. For the31.5 µm disks
the agreement is decent for two of the data points but fails for
the other two.

First note that the presence of the nearby second mode has
a large influence on the highQ mode’s quality factor. This is
seen in the large swings in the upper curves of Figs. 4 and 5
which are computed solely from the system eigenvalues. The
reader is cautioned, however, that quality factors as high as108

can not be expected due to other limiting physical phenomena
beyond anchor loss.

A good method of visualizing the mode interaction is to
examine a root-locus diagram for the two interacting poles
(eigenvalues) parameterized by film thickness. Fig. 6 was
computed for the41.5 µm radius disks. As the thickness
changes the two poles approach each other. The first mode’s
frequency first moves away from the real axis increasing
damping, then back toward the real axis decreasing damping.
The speed of the first pole increases the closer the approach
of the second pole in the complex frequency plane. Additional
data supporting the view of interacting poles is evident in the
transmission curves in Figs. 2(a) and 2(b). In particular in
Fig. 2(a), a secondary peak is noticeable to the left of the
main peak, providing a hint that an additional mode might be
interfering with the first mode.

Regarding the data points for which we do not obtain good
agreement, we note the following points:

1) We have assumed an idealized axis-symmetric geometry.
2) We have permitted only axis-symmetric motions in our

computations.
3) We have ignored the grain/crystal structure of the film

by assuming it has nominal isotropic material properties.
4) Lastly, we have only accounted for anchor loss.

IV. CONCLUSIONS

The use of a PML to model anchor loss in high frequency
resonators is a viable methodology. The method allows one
to correctly model anchor loss and at the same time account
for sub-surface scatterers. With a tool like the one we have

developed [15], one can identify critical design issues such as
the one we have demonstrated with respect to film thickness.
Our results would be difficult to predict with hand models, or
with acoustic approximations. In particular, the modeling of
mode coupling is truly a complex 3-D phenomena which is
simply inaccessible to hand modeling. This clearly illustrates
the need for detailed simulation tools in order to predict
resonatorQ values.
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