

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

HiQLab: Simulation of Resonant MEMS

Tsuyoshi Koyama Prof. Dr. Sanjay Govindjee Center for Mechanics, IMES, ETHZ

IMES INSTITUT FÜR MECHANISCHE SYSTEME

2007/1/22

Beowulf Day WS 2006/2007

1

High-frequency MEMS resonators(MHz-GHz)

Applications as small size, low energy consuming frequency references, filters, and sensors

Resonator Simulation

HiQLab:Tool for evaluating damping in resonant MEMS

- Finite element method (FEM) based tool for coupled problems
- Physical damping models (Thermoelastic damping, Anchor loss)
- Efficient algorithms (eigenfrequency computation, Arnoldi based reduced order models)
- Matlab and Lua interface

2007/1/22

Disk resonator (Anchor loss)

Mechanism: Energy loss from radiating waves escaping into the substrate.

SEM of 41.5 um radius poly-SiGe disk resonator

Section of disk resonator

2007/1/22

Perfectly Matched Layers (PML)

Mechanism: Energy loss from radiating waves escaping into the substrate.

SEM of 41.5 um radius poly-SiGe disk resonator

Perfectly Matched Layer

Outgoing waves are absorbed with zero impedance mismatch at PML boundaries.

2007/1/22

Uniprocessor axisymmetric results

6

Frequency and Q

Equation of motion discretized with FEM under harmonic assumption

Quadratic eigenvalue problem.

$$(-\omega^2 M + i\omega C + K)x = 0$$

Complex eigenfrequency

$$\omega = \omega_R + i\omega_I$$

١

Implementation in parallel computing

2007/1/22

Sparse eigenvalue problem

PML implementation results in:

Complex symmetric generalized eigenvalue problem $Kx = \omega^2 M$

Difficulty: Complex valued, Non-Hermitian

Krylov subspace based method

Strategy to control projection subspace of eigenvalue problem Apply operator to expand subspace at each step.
 (Linear system solver)

Parallel implementation

Petsc (C)	Trilinos (C++)
 Complex valued Parallel iterative solvers Parallel preconditioners Interface to parallel direct solvers 	 Real valued Parallel iterative solvers Parallel preconditioners Interface to parallel direct solvers
 Slepc (Krylov-Schur) Basis Petsc iterative solvers and preconditioners 	Complex vector objects 1. Anasazi (Block Krylov-Schur) 2. SuperLU_Dist (complex)
2007/1/22 Beowulf Day W	S 2006/2007 9

Results

Petsc (C)Fails for Axisymetric,	 Trilinos (C++) Solves 3D, 120k DOF, A process using 12GB
2.8k DOF, 1 process	 Fails 3D, 407k DOF, 64 process using 113GB, 30min.
Observa	ations
Both cases fail in the linear sol	ver for expansion of subspace
• Iterative fails without good complex valued preconditioner	• Direct methods take large
	amounts of memory and may
	adequate time.

2007/1/22

Alternative solutions for linear solve

Direct method:

- Complex valued solver MUMPS
- Reduce fill in with more efficient nodal ordering algorithm
- Iterative method:
 - Preconditioners for complex-valued matrices (Some exist for application to PML)
 - Solve with the equivalent real formulation and use pre-existing rich software

HiQLab group and Software

PIs: Prof. Sanjay Govindjee (ETHZ) Prof. James Demmel (CS and Math, Berkeley) Prof. Roger Howe (Stanford) Post doctoral students: Dr. David Bindel (Courant Institute, NYU) Dr. Emmanuel Quevy(Electrical Eng., Berkeley) Graduate students: Wei He (Civil Engineering, Berkeley) Members of the SUGAR group HiQLab: Resonant MEMS Simulator http://www.cims.nyu.edu/~dbindel/higlab